
Child Development, 2025; 0:1–12
https://doi.org/10.1111/cdev.14232

1 of 12

Child Development

EMPIRICAL ARTICLE

Children Predict Improvement on Novel Skill 
Learning Tasks
Xiuyuan Zhang   |  Brandon A. Carrillo  |  Ariana Christakis  |  Julia A. Leonard

Department of Psychology, Yale University, New Haven, Connecticut, USA

Correspondence: Xiuyuan Zhang (flora.zhang@yale.edu)

Received: 31 July 2024  |  Revised: 19 December 2024  |  Accepted: 19 January 2025

Funding: This study was supported by a Jacobs Foundation Research Fellowship awarded to J.A.L.

Keywords: development | learning | learning curves | predictions of learning

ABSTRACT
Learning takes time: Performance usually starts poorly and improves with practice. Do children intuit this basic phenomenon of 
skill learning? In preregistered Experiment 1 (n = 125; 54% female; 48% White; collected 2022–2023), US 7- to 8-year-old children 
predicted improved performance, 5- to 6-year-old children predicted flat performance, and 4-year-old children predicted near-
instant success followed by worse performance on a novel skill learning task. In preregistered Experiment 2 (n = 75; 47% female; 
69% White; collected 2023), on a task with lowered cognitive demands, US 4- to 6-year-old children predicted improved perfor-
mance. Thus, although children expect to improve on novel tasks, younger children need scaffolding to form these predictions 
and grasp this fundamental aspect of learning.

Picture a child trying to ride a bike for the first time. Do they ex-
pect to nail it on the first try? Or instead, do they anticipate that 
learning to ride a bike will take many attempts and be a process 
of gradual improvement? Critically, how children think about 
their future learning could have downstream consequences for 
their actual learning. For instance, if a child incorrectly assumes 
that success will come easily, they may pick tasks that are too 
challenging for their ability, get frustrated, and ultimately give 
up trying when they don't progress as quickly as expected (Finn 
and Metcalfe 2008; Dai et al. 2018; Muenks et al. 2018; Leonard 
et al. 2023). Thus, understanding how children predict their fu-
ture learning may not only provide insights into children's be-
liefs about skill acquisition but also inform caregivers on how 
best to guide children's effort allocation. Here, we explore how 
young children think their future learning will unfold.

A common way to represent and track learning progress is 
with a “learning curve”—a measure of performance over time. 
Learning curves have been well studied and characterized in 

the domain of motor learning, with decades of research show-
ing that motor skill learning curves follow an exponential 
decay function (Luft and Buitrago 2005; Heathcote et al. 2000; 
Krakauer et al. 2019). That is, when learning a new skill, people 
usually make rapid progress early on, followed by a performance 
plateau (Luft and Buitrago  2005; Mazur and Hastie  1978). 
Adults correctly intuit that their future skill learning will have 
this shape even before engaging in a task (Zhang et al. 2025). 
Children's performance similarly improves over time on motor 
tasks (Rossi et  al.  2019; Solum et  al.  2020). However, less is 
known about children's understanding of how their future 
learning unfolds over time. Specifically, it is unclear whether 
children, like adults, expect that their performance will increase 
during the beginning of skill acquisition.

Prior work suggests that, with experience, preschool-age chil-
dren can accurately represent features of their future perfor-
mance (e.g., expectancy of success, or uncertainty) at discrete 
time points and use this information to guide their actions. For 
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example, 20-month-old toddlers selectively ask their caregiver 
for help when encountering a challenge (Goupil et al. 2016) and 
preschoolers explore more when they are uncertain (Lapidow 
et al. 2022; Baer and Kidd 2022; Ghetti et al. 2013; Schulz and 
Bonawitz 2007). Furthermore, 4- to 6-year-old children are more 
likely to stick with a challenge when their performance has im-
proved compared to when it has stayed the same, suggesting 
that children are sensitive to the rate of their past performance 
(Leonard et al. 2023). However, most of these studies looked at 
children's behavior after some experience with a task. It remains 
less clear whether children can predict features of their future 
learning before embarking on a novel task. Furthermore, it is 
unknown whether children only represent their future learn-
ing at one time point or over a sequence of points in time (i.e., a 
learning curve).

Children's decisions about what to practice provide another 
clue for discovering how they think about their future learning. 
Specifically, studies on deliberate practice reveal a developmen-
tal change in practice strategies between the ages of 4 and 8. 
By age 6, children selectively practice the game (amongst other 
games) that they will soon be tested on (Brinums et  al.  2018; 
Casey and Redshaw  2022). When asked why they decided  to 
play the soon-to-be-tested game, most 6- to 7-year-old children 
referenced  ‘practice’, whereas 4- to 5-year-old children did 
not (Brinums et al. 2018; see also Davis et al. 2015). Similarly, 
when asked to describe “what does learning mean?”, 6- to 
8-year-old children used more process-based language (e.g., 
references to practice) than 4- to 5-year-old children (Sobel and 
Letourneau 2015). Taken together, this body of work shows that 
by age 6, children seem to understand that practice is neces-
sary for mastery and verbally describe learning as improvement 
(Brinums et al. 2018; Casey and Redshaw 2022; Davis et al. 2015; 
Sobel and Letourneau 2015).

This developmental change in children's understanding of prac-
tice may be due to an age-related shift in how children repre-
sent their future learning. Decades of research have shown 
that young children are unduly optimistic when making pre-
dictions about their future performance (Flavell et  al.  1970; 
Yussen and Levy 1975; Schneider 1998; Coote and Livesey 1999; 
Hennefield and Markson  2022; Xia et  al.  2024; Leonard and 
Sommerville 2024). For example, even after receiving feedback 
that their predictions are too lofty, 4-year-old children continue 
to over-predict their performance on a motor task across trials 
(Xia et  al.  2023; Schneider  1998). This optimism may cause 
preschool-age children to expect quick success on novel tasks 
and thus not appreciate the necessity of practice. Although op-
timism declines between the ages of 3 and 11, 7- to 11-year-old 
children are still optimistic about their own learning when com-
pared to adults (Lockhart et al. 2021; Xia et al. 2024; Leonard 
and Sommerville 2024). Thus, even though elementary school-
age children appreciate the need for practice (e.g., Brinums 
et al. 2018; Casey and Redshaw 2022), they may still over-predict 
parts of their future learning curve.

It is also possible that prior work underestimated young chil-
dren's abilities to predict their future learning. Many of these 
studies relied on cognitively demanding paradigms that tax 
children's verbal abilities, memory, and executive function—all 
skills that are known to develop with age (Best and Miller 2010; 

Gathercole 1998; Hunt 1978). Indeed, recent work by Serko and 
colleagues (Serko et  al.  2024) found that, on a simplified de-
liberate practice paradigm where children were unsure which 
one of two tasks would be tested, even 4- to 5-year-old children 
chose to practice the harder of the two tasks after experience 
with both. Thus, on simplified paradigms, even preschool-age 
children may understand that mastering difficult tasks takes 
practice. Yet, prior work does not reveal whether children un-
derstand the consequences of the decision to practice (e.g., that 
practice leads to improved performance over time), nor whether 
they have a graded understanding of how learning will progress. 
Moreover, it is unclear what children think about their future 
learning on novel tasks, where they have little experience or 
feedback on their ability.

1   |   The Current Experiment

Here, we set out to understand the nature and developmental 
timing of children's beliefs about their future learning curves. 
In particular, we explore whether children, like adults (Zhang 
et  al.  2025), think that they will improve at a novel task over 
time. To capture even young children's intuitions, we created a 
novel bean bag toss paradigm with minimal verbal cues and low 
memory demands. The goal of the game was to toss bean bags 
onto a target in the middle of a gridded mat on the floor. To make 
the game novel and challenging, we had children toss the bean 
bag with their feet instead of their hands. To index children's 
anticipated learning curve, we had them predict where their 
first few tosses would land by physically placing bean bags on 
the mat. A benefit of capturing predictions of learning in motor 
skill task, as opposed to a more opaque cognitive task, is that the 
motor task does not impose additional attentional and process-
ing demands on children (Hiscock et al. 1985; Miller et al. 1991; 
Schäfer 2005). Instead, capitalizing on children's intuitive under-
standing of relative distance (Boyer and Levine 2015; de Hevia 
and Spelke  2010; Huttenlocher et  al.  1994; Newcombe  2014), 
children made non-verbal predictions of future performance 
using the tangible properties of the task. Additionally, each 
child's prior predictions were left in place on the mat to reduce 
any memory demands of past predictions.

Using the grid on the mat, we recorded the coordinates of each 
bean bag and calculated the Euclidean distance (from the bean 
bag to the center of the target), which served as our primary 
measure of performance. With this information, we were able 
to reconstruct each child's precise predicted learning curve. 
Distinct from prior work (see Xia et al. 2023; Schneider 1998), 
children made each prediction without performance feedback in 
between, allowing us to get an estimate of children's predicted 
learning curves unbiased by actual performance. After chil-
dren made predictions, we recorded their actual performance 
while playing the game as a reference point for examining their 
optimism.

In Experiment 1, we examined 4- to 8-year-old children's perfor-
mance predictions, and in Experiment 2, we honed in on 4- to 
6-year-old children on an adapted task (Experiment 1 prereg-
istration: https://​osf.​io/​mw5tq​; Experiment 2 preregistration: 
https://​osf.​io/​ux79b​; all analyses reported in the Result sections 
are preregistered unless otherwise noted, see Data S1 for minor 
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deviations from preregistration; OSF repository with script, 
data, and code: https://​osf.​io/​wtyxn​). We focused on this broad 
age range to capture potential developmental changes given 
prior work showing maturation in optimism and understand-
ing of practice between the ages of 4 and 8 (Brinums et al. 2018; 
Casey and Redshaw 2022; Leonard and Sommerville 2024; Xia 
et al. 2024). We hypothesized that children would predict that 
their performance would improve across trials (i.e., the bean 
bags would get closer to the center; note that we did not have 
predictions about where in particular the bean bags would land). 
However, given young children's documented optimism (Xia 
et al. 2024; Leonard and Sommerville 2024), we also hypothe-
sized that younger children would predict better performance 
than older children, and in turn, potentially flatter learning 
curves. Taken together, this work aims to uncover whether chil-
dren approach novel tasks thinking that they will get better.

2   |   Experiment 1

The goal of Experiment 1 was to explore whether 4- to 8-year-old 
children predict that their performance will improve on a novel 
motor task. Children predicted where their first five tosses of 
a bean bag toss game would land on a large mat with a coor-
dinate grid and a red circle in the center (see Figure 1a–c; see 
Xia et  al.  2023 and Schneider  1998 for work using a similar 
amount of trials for children's performance predictions). After 
children made predictions, they played the game for five trials. 
Children's actual tosses served as a comparison point for evalu-
ating the accuracy of their predictions of performance and slope 

of improvement, and in turn, their optimism. Additionally, we 
asked children to report the perceived task difficulty after mak-
ing predictions to compare verbal to non-verbal (average perfor-
mance and slope) task assessments.

2.1   |   Method

2.1.1   |   Participants

We collected a sample of 125 4- to 8-year-old participants (25 
children per age group, binned by age in year; 54% female, 43% 
male, and 3% preferred not to answer) at two local museums in 
Hartford, Connecticut and Philadelphia, Pennsylvania from 
July 2022 to November 2023. All participants were from the 
United States. We did not perform a power analysis a priori 
because there was no effect size estimate of predicted learning 
curves. Instead, we based our sample size on related studies 
that also have children make inferences about their future 
performance (e.g., Schneider 1998; Serko et al. 2024). Parental 
income ranged from less than $4,999 to more than $200,000 
a year, with a median income of $125,000 (M = $122,840, 
SD = $60,780; 26% of parents had missing demographic data or 
preferred not to answer). Parental education also ranged from 
12 to 20 years (M = 16.26, SD = 2.36; 6% of parents had miss-
ing demographic data or preferred not to answer; see Data S1 
exploratory for analyses on household income and parental 
education). The racial and ethnic makeup of the participants 
was as follows: 48% White, 19% Hispanic or Latino, 17% Asian, 
13% Other, 7% Multiracial, 6% Black, 1% American Indian 

FIGURE 1    |    Experiment schematics. (a) In Experiment 1, 4- to 8-year-old children were introduced to a game where they had to toss bean bags (5 
total tosses) with their foot to try to land them in a red circle on a gridded mat 8 ft. away. (b) In Experiment 1, before playing, children were asked to 
make predictions about where they thought each of their tosses would land. They did so by placing the bean bags (with numbers for each toss) directly 
on the mat. The Euclidean distance (d) between each bean bag's location and the center of the grid was calculated using d = 

√

(

x1−x2
)2

+

(

y1−y2
)2, 

in order to reconstruct a child's predicted and actual performance. (c) Photo of participant placing predictions on the mat in Experiment 1. (d) In 
Experiment 2, 4- to 6-year-old children played a similar game as in Experiment 1 with lower cognitive demands and features to reduce optimism. 
Specifically the gridded mat now included concentric, colored rings as the prediction space and children only made 3 total bean bag tosses. Children 
were also given a chance to practice making a prediction before making a practice toss towards the mat, and they were told that they could receive 
rewards for making correct predictions (bean bag landing in the predicted region). (e) Children made predictions about where they thought each of 
their tosses would land, this time using numbered paper plates corresponding with the numbered bean bags and placing predictions inside rings. 
Children were given the option to either place the plates on the mat or say the color of the ring they predicted in Experiment 2. (f) Photo of participant 
placing predictions on the modified mat in Experiment 2.

https://osf.io/wtyxn
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or Alaskan, 1% Native Hawaiian or Pacific Islander, and 7% 
preferred not to answer. Additional 20 participants were ex-
cluded from further analyses based on preregistered criteria: 
ASD diagnosis (n = 6), children failing to complete the full 
experiment (n = 5), children moving their bean bag tosses be-
fore they could be properly recorded (n = 5), and experimenter 
error (n = 4). One additional participant (n = 1) was excluded 
due to outside interference (e.g., parent or other child interfer-
ing with bean bags; note that this exclusion criteria was not 
preregistered due to an oversight).

2.1.2   |   Stimuli

The setup for the bean bag toss game included a gridded mat and 
five bean bags. The mat was 84.6 × 84.6 in. (with 60 × 60 1.41 in. 
squares as the grids). On the mat, we painted a circle in red at 
the center (4.23 in. in radius) and a concentric outer ring in red 
(16.92 in. in radius; Figure 1b) to reduce children from overly fix-
ating on the center red circle. The five bean bags were all 4 × 4 in. 
and each weighed 6 oz. The bean bags were labeled with num-
bers 1 through 5 on both sides.

2.1.3   |   Procedure

This experiment had three phases: a training phase, a prediction 
phase, and a play phase. In the training phase, participants were 
told that the goal of the game was to land the bean bags in the 
red circle at the center of the mat (see Figure 1a). Participants 
were asked to restate the goal of the game as a comprehension 
question, were corrected if they answered incorrectly, and were 
excluded if they answered the question incorrectly on the sec-
ond try (all participants answered this comprehension check 
correctly). The experimenter next walked the participant to a 
line taped 8 ft away from the mat and explained that they needed 
to toss the bean bag from behind the line. However, instead of 
tossing with their hand, the experimenter explained that they 
needed to toss the bean bag with their foot in this game. To gain 
some understanding of the task, participants were allowed to 
make one practice toss away from the mat and toward the ex-
perimenter standing 2 ft from them. The practice toss was inten-
tionally directed away from the mat to avoid anchoring effects 
on children's predictions of their performance.

In the prediction phase, participants made five sequential pre-
dictions about where their bean bag tosses would land. The ex-
perimenter asked, “where do you think your first (Trial 1)/next 
(Trials 2, 3, and 4)/last (Trial 5) toss will land?” and prompted 
children to walk on the mat and place a bean bag down to mark 
their prediction (the number on the bean bag matched the trial 
number). All five bean bags were left on the mat during the pre-
diction phase. The experimenter took a photo of the bean bags 
on the mat and recorded the coordinates of off-mat tosses with 
a measuring tape before collecting all the bean bags for the 
play phase.

To capture whether participants' predicted performance trajec-
tories related to their explicit perception of how hard the task 
was going to be (e.g., steeper curves for people who thought the 
task was easier), we asked participants after their predictions, 

“do you think landing the bean bag in the center of the mat with 
your foot is easy or hard?” and a follow-up question, “do you 
think it is kind of easy (hard) or really easy (hard)?”

In the play phase, participants stood 8 ft away from the mat and 
made five sequential tosses (the number on the bean bag also 
matched the trial number). After a participant completed all 
tosses, the experimenter took a photo of the bean bags on the 
mat and recorded the coordinates of off-mat tosses with a mea-
suring tape.

2.1.4   |   Data Coding

The horizontal and vertical locations for the center of the bean 
bags were coded based on photos of the mat. If a bean bag landed 
outside the mat (6% of predicted tosses and 72% of actual tosses), 
measurements were taken by the experimenter at the time of 
testing using a measuring tape (from the center of the bean bag 
to the edge of the grid) and converted to X- and Y-coordinate 
values. All X- and Y-coordinate data were double-scored by a 
second coder based on photographs and videos (note that bean 
bags that landed off the mat could not be double-scored; see OSF 
repository for response coding instructions). A third coder arbi-
trated discrepancies over 1 in. between the two coders (note that 
the bean bags were 4 by 4 in., much larger than the grid units of 
1.41 by 1.41 in., and thus we allowed discrepancies under 1 in. 
in measurement). Coder scores were highly correlated (r = 0.99, 
p < 0.001) before third-coder arbitration.

We calculated the Euclidean distance based on the X- and Y-axis 
locations of the bean bags to the center of the mat. Predicted per-
formance was operationalized as the Euclidean distance from 
the center of the bean bag to the center of the mat during the 
prediction phase, and actual performance was operationalized 
as the Euclidean distance from the center of the bean bag to the 
center of the mat during the play phase.

2.2   |   Results

2.2.1   |   Performance Predictions

Contrary to our hypothesis, on average 4- to 8-year-old chil-
dren did not predict that their performance would improve 
across trials (Figure  2a). Instead, only children 79 months 
(6.6 years) and older predicted improved performance across 
trials. A linear mixed-effects model predicting children's pre-
dicted performance (in Euclidean distance) using trial and 
age (in months) with random intercepts and random slopes 
of trial by participants revealed a main effect of age (b = 0.21, 
p < 0.002) and only a trend of trial (b = −0.74, p = 0.12; an ad-
ditional model testing if children's predicted performance 
followed a quadratic function of trial was not significant, 
b = −0.74, p = 0.12, see Data S1 for details). This suggests that, 
on average, children did not think that their performance 
would change across trials, but, as hypothesized, younger 
children predicted better average performance than older 
children. We also found a significant interaction between trial 
and age (b = −0.12, p < 0.001), showing that predictions of fu-
ture performance change with age. To interrogate age-specific 
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effects on performance prediction, we conducted a Johnson-
Neyman test. As shown in Figure 2b, we found that partici-
pants younger than 60 months predicted worse performance 
over time (i.e., a positive slope of trial; to calculate each partic-
ipant's slope, we took the beta coefficient, for each participant 
from the linear regression: predicted distance = b * trial + a), 
while participants 79 months and older predicted improved 
performance (i.e., a negative slope, t = 2.13, pFDR-corrected 
< 0.05). Additional exploratory analyses examining the loca-
tion of children's predictions are included in Data S1.

2.2.2   |   Perceived Difficulty (Exploratory)

Younger children thought the task would be easier than older 
children: A linear regression predicting children's difficulty rat-
ing (with a 1-on-1 mapping from “really easy”, “kind of easy”, 
“kind of hard”, and “really hard” to numeric values 1, 2, 3, and 
4) using age revealed a main positive effect of age (b = 0.02, 
p = 0.004; n = 124 since one participant's difficulty judgment 
was not available due to experimenter error). Furthermore, 

controlling for age and trial, children who thought the task 
would be harder predicted worse performance (bdifficulty = 2.56, 
p = 0.02; bage = 0.17, p = 0.01; btrial = −0.76, p = 0.11 from a lin-
ear mixed-effects model predicting children's predicted per-
formance using difficulty rating, age, and trial with random 
intercepts and slopes of trial by participants). However, children 
who thought the task would be harder did not predict steeper 
slopes (bdifficulty = −0.27, p = 0.53; bage = −0.11, p < 0.001; from a 
linear model predicting participants' predicted rate of perfor-
mance using difficulty ratings and age).

2.2.3   |   Actual Performance

On average, children did not significantly improve at the game 
across five trials, and older children tossed the bean bag closer to 
the target than younger children: A linear mixed-effects model 
predicting actual performance using trial and age with random 
intercepts and slopes of trial by participants revealed a main ef-
fect of age (b = −0.57, p < 0.001) but not trial (b = −1.30, p = 0.17). 
There was also no significant trial by age interaction on actual 

FIGURE 2    |    Predicted and actual performance by age in Experiment 1. (a) Average predicted performance (in blue) and actual performance (in 
yellow) across five trials by age group. Error bars are bootstrapped 95% confidence intervals (computed from simulation with 1000 iterations), and 
the dashed gray line indicates the radius for the red circle (the center of the mat). A figure with only average predicted performance is available in 
Data S1. (b) A Johnson-Neyman test showing predicted learning curves over five trials (i.e., slope) by participants' age (in month). Significant slopes 
are in green and separated by the vertical green dashed lines. The p-value is FDR-corrected. Individual participants' predicted slopes are shown on 
the plot as scatter points. The shaded green and gray error bars are 95% confidence intervals calculated in the Johnson-Neyman function. Children 
younger than 60 months predicted significant positive slopes (vertical dashed line on the left), and children older than 79 months predicted significant 
negative slopes (vertical dashed line on the right).
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performance (b = 0.01, p = 0.80), showing that children's actual 
rate of learning did not differ by age.

2.2.4   |   Comparison Between Predicted and Actual 
Performance

Next, we examined whether children were accurate at pre-
dicting their future performance. In general, children's aver-
age predictions (M = 15.30, SD = 17.49) were much lower than 
their average performance (M = 70.04, SD = 36.71), showing 
that children overestimated how well they would perform in 
the task (lower indicates better performance; paired Wilcoxon 
test V = 4951, r = 0.82, p < 0.001; see Figure  2a). To probe 
whether the trial or children's age was related to accuracy 
in children's predictions, we computed a difference score be-
tween children's average predicted and actual performance 
across five trials and ran an exploratory analysis with a lin-
ear mixed-effects model predicting the difference scores using 
age with random intercepts by participants. Model results re-
vealed a main positive effect of age (b = 0.86, p < 0.001), show-
ing that older children made more accurate predictions about 
their average performance than younger children (a model 
with an additional fixed effect and random slopes for trial 
did not converge, thus as preregistered, we reported the max-
imally converged model instead; see Data  S1 for details and 
additional analyses). A linear mixed-effects model predicting 
children's actual performance using predicted performance, 
age, and trial (with random intercepts and random slopes of 
trial and predicted performance by participants) revealed that 
children's predictions of their performance did not scale with 
their actual performance (b = 0.09, p = 0.37).

A set of exploratory analyses further examined whether chil-
dren accurately predict the slope of their performance curves. 
To calculate the slope of actual performance, we extracted the 
beta coefficient from the linear regression: actual distance = b 
* trial + a for each participant. Children's predicted rates of 
improvement (M = −0.74, SD = 5.23) were not significantly 
different from their actual rate (M = −1.30, SD = 10.41; paired 
Wilcoxon test V = 4288, r = 0.08, p = 0.39). We next computed 
a difference score between children's predicted and actual 
learning rates and explored if children's accuracy in predict-
ing their learning rates changed with age. We ran a linear 
model predicting the difference score using age and found 
that older children overestimated their rates of improvement 
more compared to younger children (b = −0.13, p = 0.02). 
Additionally, a linear model predicting children's actual slope 
using their predicted slope while controlling for age revealed 
a trend in which children who predicted steeper learning 
curves improved more across five trials (btrial = 0.37, p = 0.057; 
bage = 0.06, p = 0.32; a structurally-identical model exclud-
ing outliers above and below three standard deviations from 
the mean resulted in similar findings: btrial = 0.47, p = 0.066; 
bage = 0.06, p = 0.31).

2.3   |   Interim Discussion

Results from Experiment 1 revealed that children ages 6.6 to 
8 years predicted that they would improve at a novel motor 

task, while 4-year-old children predicted that they would 
actually get worse at a novel motor task over time, and 5- to 
6.6-year-old children predicted flat learning curves. Children 
of all ages did not significantly improve at the game. Older 
children perceived the task as more difficult and predicted a 
more accurate (yet still optimistic) overall performance but 
steeper slopes of learning than in reality compared to younger 
children.

It is possible that older children's over-optimism in their pre-
dicted performance and rate of improvement may be an artifact 
of the testing environment: Children may not have significantly 
improved on the task across 5 trials because they were tested 
on the museum floor, a distracting environment, and were not 
incentivized to actually succeed. We tested this hypothesis in 
Data S1 Experiment 1b and found that 7- to 8-year-old children 
still do not significantly improve on the first five trials of the 
bean bag toss game even under motivating (children were of-
fered rewards for accuracy) and quieter conditions (children 
were tested in a private room off the museum floor; see method 
and results in Data  S1). In short, we did not find significant 
performance improvement on this task across two experiments 
with different features that often improve performance (such as 
making performance predictions and offering rewards for per-
formance; Cottini et al. 2018; Xia et al. 2023). This suggests that 
older children's optimism about their future performance is not 
an artifact of the testing environment.

Instead, it is likely that this task requires longer periods of prac-
tice for significant improvement. Indeed, prior work found sim-
ilar learning curves for 10-, 18-, and 40-year-old participants on 
a dart throwing task with their non-dominant hand across 200 
trials (Solum et al. 2020; notably, 10-year-old participants had 
more variable performance compared to 18- and 40-year-old 
participants). Thus, 6.6- to 8-year-old children in our study were 
somewhat correct in predicting improvement over time but were 
overly optimistic about the timescale of this improvement. Five- 
to 6.6-year-old children, on the other hand, were overly optimis-
tic about their average performance but somewhat accurate in 
predicting a flat initial learning curve, and 4-year-old children 
were neither accurate about their actual performance nor rate 
of improvement, as they predicted systematically getting worse 
across trials while their actual performance was flat.

However, it is unclear whether 4-year-old children genuinely 
believe they will get worse on our task and 5- and 6-year-old 
children think their performance will remain stagnant. 
Although it could be the case that cognitive changes in de-
velopment concerning children's metacognition (Gonzales 
et al. 2022; Schneider 2008; Roebers 2017) or counterfactual 
reasoning (Rafetseder et  al.  2013; Nyhout and Ganea  2019; 
Kominsky et al. 2021) spurred these results, there are a num-
ber of reasons to believe that the developmental changes we 
are observing are driven instead by task demands. First, many 
(55% of children in the age range between 4-year-old and 
6.6-year-old) put their first bean bag on the target. As this was 
the only colored portion of the mat, the saliency of this target 
could have distracted younger children from thinking about 
the full range of their predictions. For example, some younger 
children placed all their bean bags in a straight line or in 
each quadrant of the target. This behavior could reflect a bias 
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towards salient visual features of the mat rather than the goal 
of the game or a lack of understanding of how the placement 
of these bean bags corresponds to predictions of performance. 
Second, although we tried to reduce cognitive demands in our 
paradigm, it is possible that our current experimental design 
was too conceptually challenging for younger children. Asking 
children to make precise predictions on a mat with many pos-
sibilities (i.e., every point on the 60 × 60 gridded space) might 
have been quite complex for young children. Third, the fact 
that many young children predicted immediate success and 
said that the game would be “easy” suggests that perhaps their 
overoptimism may have blocked them from considering the 
necessity of practice. In Experiment 2, we explore whether 
even 4- to 6-year-old children can predict that their perfor-
mance will improve on a modified version of this task with 
lower cognitive demands and features to reduce optimism.

3   |   Experiment 2

The goal of Experiment 2 was to see if 4- to 6-year-old children 
predict that they will get better at a simplified version of the 
bean bag toss game used in Experiment 1. We made the follow-
ing changes to the bean bag toss paradigm to lower cognitive 
demands and temper children's optimism. First, we created a 
new target that had five colored rings around the main red cir-
cle. By adding more color to the mat, we reduced the saliency 
of the center red circle to encourage children to attend to the 
full mat space (see Gaspelin et al. 2015; Turoman et al. 2021). 
The colored rings also constrained the prediction space to ac-
commodate children's developing spatial and counterfactual 
reasoning (Vasilyeva and Lourenco 2012; Leahy et al. 2022): 
Instead of having children predict the precise location of 
their tosses on a large mat as in Experiment 1, we simply had 
them predict which ring their toss would land in. To further 
lower cognitive demands, we reduced the number of predic-
tion trials from five to three (as in Schneider  1998). Finally, 
to minimize children's optimism, we made the following two 
changes. First, considering prior work showing that practice 
trials improve children's task performance (Setoh et al. 2016), 
we allowed children to have one practice prediction and actual 
toss to give them first-hand experience that the task might be 
harder than they expected. Second, inspired by work showing 
that incentivized predictions lower young children's optimism 
(Xia et al. 2023), we told children that they could get stickers 
for both accurate predictions and good performance.

Given this simplified paradigm, we hypothesized that all chil-
dren would predict improved performance across three trials. 
Additionally, following the results in Experiment 1, we hypoth-
esized that 6-year-old children would predict overall worse per-
formance than 4-year-old children and, in turn, steeper learning 
curves.

3.1   |   Method

3.1.1   |   Participants

We collected a sample of 75 4- to 6-year-old participants (25 
per age group as in Experiment 1, binned by age in year; 47% 

female, 53% male) at the same local museum and two local el-
ementary schools in Connecticut from July 2023 to November 
2023. A power analysis indicated that 75 participants (25 par-
ticipants per age group) were required for a power of 0.80 
(see Data  S1). Parental income ranged from around $5000 to 
more than $200,000 a year, with a median income of $175,000 
(M = $156,960, SD = $53,260; 16% of parents had missing demo-
graphic data or preferred not to answer). Parental education also 
ranged from 12 to 20 years (M = 17.38, SD = 2.18; 5% of parents 
had missing demographic data or preferred not to answer; see 
Data S1 for exploratory analyses on household income and pa-
rental education). The racial and ethnic makeup of the partic-
ipants was as follows: 69% White, 16% Hispanic or Latino, 9% 
Asian, 9% Multiracial, 5% Other, 3% Black, 1% Native Hawaiian 
or Pacific Islander, and 3% preferred not to answer. Additional 
15 participants were excluded from further analyses based on 
preregistered criteria: incorrectly answering comprehension 
checks (n = 8), ASD diagnoses (n = 4), child failing to complete 
full experiment (n = 2), or experimenter error (n = 1).

3.1.2   |   Stimuli

We created a modified version of the gridded mat in Experiment 
1, with concentric colored rings and a red circle at the center of 
the mat (see Figure 1d–f). All colored rings were designed to be 
a uniform distance apart (6.7 in.); however, due to fabric printing 
disfiguration, the six colored rings had about a 0.3 in. range of 
distance from one another (approximately 6.5–6.8 in. distance 
between each ring). This experiment included four bean bags 
(same dimensions and weight as in Experiment 1): one for the 
practice trial and labeled with a solid triangle shape, and the re-
maining three bean bags were labeled 1 through 3. Additionally, 
four paper plates, each with a diameter of 6 in. were similarly 
labeled: one plate was labeled with a solid black triangle, and 
the remaining three were labeled 1 through 3. Paper plates were 
used to make predictions instead of bean bags (as in Experiment 
1) so that participants could easily compare their prediction to 
their actual toss in the practice round.

3.1.3   |   Procedure

Experiment 2 contained the same three phases as Experiment 1: 
training, prediction, and play. In the training phase, participants 
were told that they could earn one sticker if their bean bag toss 
landed in the red circle and one sticker if they accurately pre-
dicted which color ring their bean bag toss would land in (and 
thus two stickers if they predicted that their bean bag would 
land in the red circle and it actually landed there). To make sure 
participants understood these rules, we provided them with 
three examples followed by comprehension check questions (see 
Data S1). As preregistered, participants were excluded if they an-
swered at least one comprehension question incorrectly after the 
second try (n = 8).

As in Experiment 1, participants were then told how to toss 
the bean bags using one of their feet. However, different from 
Experiment 1, children were now given a practice trial to 
make a prediction on the target and toss the bean bag once 
using the “triangle” plate and bean bag. The experimenter told 
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participants that they could make their prediction either by 
placing the plate somewhere on the mat or by telling the ex-
perimenter the color of the predicted ring. We included both 
of these prediction options to encourage thoughtful predic-
tions from children who were shy with their movements (e.g., 
placing the materials) or their words (e.g., saying the color). 
Participants then proceeded to make their practice toss and, 
afterward, were informed of whether or not they earned a 
sticker and why (i.e., the experimenter pointed out whether 
the prediction and actual toss were in the same color or in 
different colors; n = 4 of participants received a sticker here). 
Both the participant's prediction and practice toss were left on 
the mat for the remainder of the procedure as a reminder of 
past performance.

In the prediction phase, participants made three sequential pre-
dictions about where their actual tosses would land before they 
played. To encourage children to be thoughtful with their pre-
dictions, the experimenter asked participants why they thought 
their toss would land in the spot they guessed after each predic-
tion. As in Experiment 1, participants were asked if they thought 
landing a bean bag in the center of the target would be easy or 
hard, and the degree of the difficulty level (e.g., “really easy”, 
“really hard”, “kind of easy”, or “kind of hard”) after their pre-
dictions to look at the connection between perceived task diffi-
culty and predicted learning curves.

Finally, children played the game. However, since children were 
now incentivized to land their tosses in their predicted rings, 
rather than just the target, children's actual toss data are less 
interpretable as a measure of true learning than the comparable 
data in Experiment 1. For this reason, we only used compari-
sons between predicted and actual performance as a measure of 
optimism in performance (average error) rather than the slope 
of performance. After completing all three tosses, participants 
collected any stickers they won and were offered a prize for their 
participation. The experimenter took a photo of the prediction 
and actual tosses and recorded predictions and bean bag tosses 
off the mat using a measuring tape.

3.1.4   |   Data Coding

All sessions were video and audio recorded with a mic either 
clipped to the experimenter's shirt or on a table or chair off to 
the side for ease of coding the child's responses to questions. If 
children's predictions and actual tosses landed on a colored re-
gion, the color responses were recorded and later transformed 
into a binned distance to the center of the mat. In order to as-
sign a numerical value for the distance between each color ring 
and the center of the target, the Euclidean distance from the 
center of the target to the midpoint of each colored ring was 
calculated and used (i.e., red ring distance = 3.35 in.; blue ring 
distance = 10.05 in.; yellow ring distance = 16.75 in.; green ring 
distance = 23.45 in.; orange ring distance = 30.15 in.; purple ring 
distance = 36.85 in.). In cases where a participant's bean bag toss 
or prediction plate was not on a colored ring (in the corners or 
off the mat; 3% of predictions and 78% of the actual performance 
tosses), the experimenter recorded the X- and Y-coordinate on 
the mat or measured the distance in inches from the center 
of the bean bag (the plate) to the edge of the mat using a tape 

measure (and converted it to X- and Y-coordinate values; like in 
Experiment 1).

The locations for all of the participants' predicted, and actual 
tosses on the gridded mat were coded by two separate coders, 
who each recorded either the color of the ring (note that, similar 
to Experiment 1, bean bags that landed off the mat could not be 
double-scored). A third coder arbitrated any discrepancies be-
tween the two, with the two coders having a high agreement 
rating before arbitration (r = 0.99, p < 0.001).

3.2   |   Results

3.2.1   |   Performance Predictions

As hypothesized, children predicted that their performance 
would improve across three trials (Figure 3). However, contrary 
to our hypothesis, we did not find an effect of age on children's 
predicted average performance or slope. A linear mixed-effects 
model predicting children's predicted performance using 
trial and age with random intercepts and random slopes for 
trial by participants revealed a main effect of trial (b = −3.81, 
p = 0.002) but not age (b = 0.11, p = 0.32). Additionally, a linear 
mixed-effects model revealed a trend for trial by age interaction 
(b = −0.22, p = 0.06).

To examine if children's experience of a practice trial influenced 
their subsequent predictions, we conducted three structurally 
similar linear mixed-effects models predicting performance 
predictions with children's practice prediction, actual practice 
performance, and the difference between prediction and actual 
performance, controlling for effects of trial and age, with random 
intercepts and random slopes by participants. All three models re-
vealed null effects (see Data S1), suggesting that the practice trial 
did not relate to children's subsequent performance predictions.

As an exploratory analysis, we examined if children strategically 
made “floor” predictions (predicting their bean bag would land 

FIGURE 3    |    Predicted and actual performance by age in Experiment 
2. Average actual (in yellow) and predicted (in blue) performance across 
three trials by age group. Note that error bars are bootstrapped 95% con-
fidence intervals (computed from simulation with 1000 iterations), and 
the dashed gray line indicates the radius for the red circle (the center of 
the mat). A figure with only average predicted performance is available 
in Data S1.
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on the outermost ring or off the mat) to optimize their chances of 
getting a sticker in the prediction phase. Only two participants 
placed all their predictions in the outermost ring and one partic-
ipant placed all their bean bags off the mat. The majority of chil-
dren placed their predictions on different regions across three 
trials (9% placed predictions on two regions and 80% placed pre-
dictions on three different regions). Thus, children did not try 
to “hack” the incentive structure of the task to optimize getting 
stickers and instead presumably tried to accurately predict their 
future performance.

3.2.2   |   Perceived Difficulty (Exploratory)

As in Experiment 1, older children were more likely than 
younger children to think that the game would be hard (lin-
ear regression: b = 0.03, p = 0.01; n = 74 since one participant's 
difficulty rating was not available due to experimenter error). 
To interrogate the relation between difficulty judgments and 
children's performance predictions, we ran a linear mixed-
effects model predicting children's predicted performance 
using their difficulty judgments, controlling for age and trial 
with random intercepts and random slopes of trial by partici-
pants. Children who judged the task as harder also predicted 
worse performance (bdifficulty = 2.85, p = 0.02; bage = 0.04, p = 0.72; 
btrial = −3.78, p = 0.003). Additionally, consistent with results in 
Experiment 1, a linear regression predicting children's predicted 
rate of improvement using difficulty ratings and controlling for 
age showed no significant relation between difficulty ratings 
and predicted rate of improvement (bdifficulty = −1.50, p = 0.27; 
bage = −0.19, p = 0.13).

3.2.3   |   Comparison Between Predicted and Actual 
Performance (Exploratory)

Since children were incentivized to land their tosses in their 
predicted rings, their actual performance was bounded by 
their predicted performance and thus not a good measure of 
learning. However, comparing average predicted performance 
to average actual performance can give us a measure of chil-
dren's optimism. We found that children overestimated their 
overall performance (M = 24.21, SD = 14.55) compared to their 
actual performance (M = 69.91, SD = 33.64; paired Wilcoxon test 
V = 696, r = 0.80, p < 0.001; see Figure  3). To see whether chil-
dren's age related to their over-predictions, we conducted a lin-
ear mixed-effects model predicting the difference score using 
age with random intercepts by participants and by trial. Model 
results revealed a significant effect of age (b = 0.86, p = 0.002), 
replicating results from Experiment 1 showing that younger 
children are more optimistic about their average future perfor-
mance than older children.

3.2.4   |   Comparison Between Actual Performance in 
Experiments 1 and 2 (Exploratory)

To test whether incentivized performance predictions influ-
enced actual performance, we compared 4- to 6-year-old chil-
dren's performance on trials 1–3 in Experiment 1, where there 
was no incentive tied to accurate predictions, to performance in 

Experiment 2. We found no significant difference between 4- to 
6-year-old children's performance in either experiment (Exp. 1: 
M = 75.71, SD = 36.10; Exp. 2: M = 69.91, SD = 33.64; two-samples 
Wilcox: W = 3104, p = 0.27). Thus, incentivizing accurate perfor-
mance predictions may not have had a strong influence on chil-
dren's actual performance in this task.

3.3   |   Interim Discussion

Results from Experiment 2 revealed that 4- to 6-year-old chil-
dren predict that they will improve at a novel motor task on a 
paradigm with minimal cognitive demands and task features 
to rein in optimism. Contrary to our hypothesis, we did not 
find age differences in children's predicted learning curves. 
However, consistent with results from Experiment 1, we found 
that younger children over-predicted their actual performance 
more than older children. Importantly, children did not try to 
hack the reward system by predicting floor performance and 
children's overall actual performance did not appear to be bi-
ased by the addition of incentives. Taken together, results from 
Experiment 2 suggest that when tasks are set up to be minimally 
demanding and explicitly designed to reduce optimism, 4- to 
6-year-old children predict that they will improve.

4   |   General Discussion

We asked whether 4- to 8-year-old children understand a basic 
phenomenon of learning: Performance usually improves at the 
beginning of skill acquisition (Evans et  al.  2018; Heathcote 
et  al.  2000). Across two preregistered experiments, we found 
evidence that children do indeed predict that their performance 
will get better on the first few trials of a novel skill learning 
motor task.

Our results reveal that children understand that learning takes 
time at a younger age than previously realized. In Experiment 1, 
we found that 6.6- to 8-year-old children, but not younger chil-
dren, predicted that their performance would get better on a 
novel task. This finding is in line with prior work showing that 
by around age 6, children both implicitly and explicitly associ-
ate practice with improvement (Brinums et al. 2018; Casey and 
Redshaw  2022; Davis et  al.  2015; Sobel and Letourneau  2015). 
Going beyond prior work, we found that when we lowered task 
demands by constraining and familiarizing children with the pre-
diction space and keeping children's optimism at bay, even 4- and 
6-year-old children predicted that their performance would im-
prove. However, as we provided ample scaffolding for young chil-
dren to express their cognitive capacities in Experiment 2 (e.g., 
changing the visual cues, constraining the prediction space, add-
ing a practice trial, and incentivizing correct guesses), it is unclear 
which modifications were most impactful. Thus, future work is 
necessary to tease apart which specific features promote young 
children's critical reasoning about their future performance.

Our findings also reveal precisely how children think practice 
will lead to mastery: through gradual improvement in per-
formance. Prior work on deliberate practice shows that 4- to 
8-year-old children focus their practice on the soon-to-be-tested 
game (Brinums et al. 2018), and, when they don't know which 
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game they will be tested on, they opt to practice the harder of two 
games (Serko et al. 2024). These choices show that children un-
derstand that practice is necessary for strong performance but do 
not reveal exactly how children expect to improve with practice. 
By capturing children's trial-by-trial predictions of their future 
performance on a task with minimal experience, we show that 
children do have beliefs about the shape of their future learn-
ing curve. In Experiment 1, we find that 6.6- to 8-year-old chil-
dren expect to gradually, linearly improve at a novel task, and, 
in Experiment 2, even 4- to 6-year-old children similarly expect 
incremental improvement. Due to children's limited attention 
span and cognitive capacities, we only asked children to predict 
a few trials of learning. In future work, it would be interesting 
to explore if children, like adults (Zhang et al. 2025), predict the 
exponential decay shape of motor learning on longer time scales.

Although children's predictions of getting better across trials re-
flect the improvement seen in average skill acquisition (Evans 
et al. 2018; Heathcote et al. 2000; Solum et al. 2020), children were 
not accurate in predicting the specific parameters of their learning 
curves. First, children of all ages over-predicted their average per-
formance. Across both experiments, we found that younger chil-
dren were more optimistic about their average performance than 
older children (in line with work showing that optimism declines 
with age; see Bamford and Lagattuta 2020; Lockhart et al. 2002; 
Schneider 1998; Xia et al. 2024; Leonard and Sommerville 2024). 
Second, 7- to 8-year-old children over-predicted their rate of im-
provement. It is possible that the size of the mat artificially con-
strained the prediction space, inflating children's optimism as 
most of their tosses landed outside the mat. Future research should 
test whether larger mats that better capture children's true perfor-
mance would lead to less optimistic predictions. Nonetheless, even 
on the same prediction mat, younger children still made more 
optimistic predictions about their future performance than older 
children, suggesting that age-related changes in over-predictions 
of performance are not solely driven by the mat size.

Critically, children's optimistic beliefs about their future per-
formance might impact which tasks they choose to pursue and 
whether they decide to persist or quit them. Prior work shows 
that children and adults prefer to work on tasks in which their 
performance has improved (Leonard et al. 2023; Ten et al. 2021). 
Thus, children may elect to take on tasks that they think they can 
swiftly master. Our study reveals that young children may need 
extra scaffolding to predict that learning takes time. Without 
this scaffolding, young children's optimism about their future 
learning curve may lead them to pick out tasks that are too hard 
for them and, in turn, get frustrated and give up when they don't 
learn as quickly as they thought. Similarly, 7- to 8-year-olds' 
over-optimism about their rate of improvement may lead to 
disappointment and potentially quitting when they do not im-
prove as quickly as expected (Zhang et al. 2025; Dai et al. 2018). 
Thus, measuring and understanding children's predicted learn-
ing curves may be useful in educational interventions, allowing 
educators to catch students' miscalibrations before those errors 
have serious consequences. A fruitful avenue of future research 
involves exploring whether and how predictions of learning 
curves impact children's task choice and persistence.

Our work also adds to broader motivational theories. Specifically, 
classic work by Carol Dweck and colleagues shows that children 

with a growth mindset, who think that abilities can grow with 
practice, are more likely to embrace challenges, persist through 
them, and have stronger academic outcomes than children with 
fixed mindsets, who believe talent is unchangeable (Dweck 2006; 
Haimovitz and Dweck  2017; Dweck and Yeager  2019; Yeager 
et  al.  2019). By probing children's trial-by-trial predictions of 
their future performance over time, our research reveals exactly 
how children think practice leads to skill improvement. This ap-
proach also offers a new, more granular method for measuring 
children's mindsets (see also Muradoglu et al. 2024). For exam-
ple, by measuring children's trial-by-trial predictions of future 
performance on various tasks, we can see whether children's 
growth mindset on a task correlates with their predicted rate 
of learning, which opens new doors for research and theory on 
growth mindset.

Our work has a number of limitations. First, our sample included 
only participants from a Western, educated, industrialized, rich, 
and democratic (WEIRD; Henrich et al. 2010) country; thus, we 
cannot address how our findings might generalize to other pop-
ulations. Second, we only tested children's predicted learning 
curves on a motor skill learning task. As such, it is unknown 
whether children similarly predict that they will improve across 
all tasks as well as whether they are sensitive to task-specific 
features that merit this inference. For example, activities that 
are harder to master generally have flatter learning curves than 
tasks that are easier to learn (Gottlieb and Oudeyer 2018; Son and 
Sethi 2006). Although young children are able to detect task dif-
ficulty from surface features (Gweon et al. 2017), it is unknown 
how children's difficulty judgments are related to their predicted 
learning curves. Our work found that children only link explicit 
ratings of task difficulty to worse average performance, not flat-
ter slopes. However, it is possible that a more coherent relation 
between task difficulty and slope of progress would be found 
if we queried children's prediction of difficulty and task perfor-
mance on more trials or on a different type of task. Third, it is 
possible that children's predictions in Experiment 2 reflect some 
sort of goal setting (e.g., to make the game more enjoyable by 
setting harder challenges) rather than or, in addition to, their 
beliefs about their future performance. Future work should see 
how different explicit goals impact children's predictions of fu-
ture performance over trials (see Rule et al. 2023).

Children's daily life is marked by learning. Here, we show that 
young children expect learning to take time: 4- to 8-year-old 
children predict that their performance will improve with 
practice on a novel skill learning task. Importantly, 4- to 
6-year-old children only make this prediction with added 
scaffolding. Thus, caregivers and teachers may need to help 
young children understand this basic phenomenon of learn-
ing in order to guide them to take on and persist with optimal 
challenges.
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